A	- Determine the pressure distribution on the 4 walls of a square pillar, set into the flow at angle of 0°. (A1). - Determine the pressure distribution on all 4 sides of a square pillar, which is placed into the measurement section with its diagonal being parallel to the flow direction (A2). - Determine the pressure distribution on the airfoil for the angles of attack 0° (one side) and 10°. - Determine the lift and drag coefficients of the body. - Determine the distribution of the inlet and outlet velocity for the measurement section.
B	- Determine the pressure distribution on the 4 walls of a square pillar, set into the flow at angle of 0°. (A1). - Determine the pressure distribution around a cylinder at 10° increments. - Determine the pressure distribution on the airfoil for the angles of attack 0° (one side) and 10°. - Determine the lift and drag coefficients of the body. - Determine the distribution of the inlet and outlet velocity for the measurement section.
C	- Determine the pressure distribution on the 4 walls of a square pillar, set into the flow at angle of 0°. (A1). - Determine the pressure distribution on the 4 walls of a square pillar, set into the flow at angle of 20°. - Determine the pressure distribution on the airfoil for the angles of attack 0° (one side) and 10°. - Determine the lift and drag coefficients of the body. - Determine the distribution of the inlet and outlet velocity for the measurement section.

